Some quasi-analytical solutions for propagative waves in free surface Euler equations
نویسندگان
چکیده
This note describes some quasi-analytical solutions for wave propagation in free surface Euler equations and linearized equations. The obtained vary from a sinusoidal form to with singularities. They allow numerical validation of the free-surface codes.
منابع مشابه
Analytic adjoint solutions for the quasi-one-dimensional Euler equations
The analytic properties of adjoint solutions are examined for the quasi-onedimensional Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green’s function approach is used to derive the analytic adjoint solutions cor...
متن کاملThe 3D Euler and 2D surface quasi-geostrophic equations
This workshop focused on the fundamental problem of whether classical solutions of the 3D Euler and surface quasi-geostrophic (SQG) equations can develop finite time singularities and related issues. During the week-long (April 6-10, 2009) workshop, these issues were extensively studied and investigated through several quite different approaches including modern PDE methods, methods from harmon...
متن کاملAnalytic Hessian derivation for the quasi-one-dimensional Euler equations
Article history: Received 6 March 2008 Received in revised form 8 September 2008 Accepted 24 September 2008 Available online 10 October 2008
متن کاملInfinite Energy Solutions for Dissipative Euler Equations in R 2
We study the system of Euler equations with the so-called Ekman damping in the whole 2D space. The global well-posedness and dissipativity for the weak infinite energy solutions of this problem in the uniformly local spaces is verified based on the further development of the weighted energy theory for the Navier–Stokes and Euler type problems. In addition, the existence of weak locally compact ...
متن کاملGlobal Solutions of the Relativistic Euler Equations
We demonstrate the existence of solutions with shocks for the equations describing a perfect fluid in special relativity, namely, d i v T = 0, where T ~ = (p + pcZ)ulU j + prl ij is the stress energy tensor for the fluid. Here, p denotes the pressure, u the 4-velocity, p the mass-energy density of the fluid, t/~ the flat Minkowski metric, and c the speed of light. We assume that the equation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2021
ISSN: ['1631-073X', '1778-3569']
DOI: https://doi.org/10.5802/crmath.63